随着冷轧速度的高速化(最大2800mpm为获得摩擦系数的定量值,开发了高速轧制模拟装置和双圆筒滑动试验机,严格计算流入油膜的厚度,对轴与轴承等的热胶着进行了评价,提出了外表光泽度的推定和控制系统,并对轧制润滑油进行了改进。作为工作辊材质,一般是将高碳Cr系锻造材进行外表淬火后,使微细碳化物在完全变为马氏体的基质中大量析出,形成硬度高的组织,但由于轧制方面的要求越来越高,因此加快了对镀Cr和喷镀WCCo来提高耐磨性的研究和高速钢及陶瓷新材质的研究。轧辊表面的加工也从喷丸清理变为电火花加工,或采用电子束和激光束等进行加工,使轧辊外表加工得更加均匀、轧辊形状更加妥当。 热轧过程中,确保资料的咬入性能,提高轧辊的耐磨性,防止轴与轴承等的热胶着是重要的课题。目前轧辊一般是使用高速钢,但希望开发出高载荷轧辊和轧制工具,以适应更大的压下轧制要求。 变形阻抗 变形阻抗值是计算轧制载荷和轧制力矩时的重要物理特性值。日本钢铁协会轧制理论研究会已对变形阻抗值的研究数据进行了空虚和收集,并采用数学模型进行了研究。 热变形阻抗方面,采用考虑到多道次高速连续轧制时的累积应变效应的变形阻抗公式进行计算后,显著地提高了热变形阻抗值的预测精度。为把考虑到资料组织变化的轧制理论进行扩展,希望能建立对材料的硬化、恢复和再结晶等现象同时进行跟踪的理论体系,积累一些与合金成分相对应的能对冶金现象进行定量化的数据。 冷变形阻抗方面,通常是采用考虑到温度和应变速度相互关系的动态变形阻抗公式进行计算。 众所周知,日本的轧制技术以理论为基础,始终处于世界先进水平。为解析板材轧制中的板材形状和中间凸度的原理,对轧机的弹性变形条件和被轧材的塑性变形条件进行了联立求解。采用将弯曲和剪切挠曲的资料力学模型进行扩展或校正的方法对各种类型轧机进行解析的方法已基本确立。另一方面,关于资料的塑性变形,采用了三维解析法,使解析由二维理论向高精度解析发展。解析法的发展方面,有采用数值计算法忠实解析变形的所谓三维解析法,有刚性和塑性FEM有弹性和塑性FEM尤其是还有为缩短计算时间而将上述方法进行组合的解析法 孔型轧制方面,一般说来纯理论处理是极为困难的作为一种简便的方法,虽然可以采用所谓的矩形换算法把孔型轧制替换为适当的矩形断面材的扁平轧制,但无法获得高精度。提高精度用的实验式和半理论式在简单推测随孔型和轧制条件变化时的变形特性和负荷特性方面依然是一种有效的方法,但目前一般是采用FEM解析。由于FEM呈现,使材料的三维解析变得可能。不只可以用于板材的解析,而且还可以用于型材、棒线材和管材的轧制力、轧制载荷、轧制力矩和宽展的求解。三维FEM解析作为一种有效的解析工具已得到人们认可。 人们期待着今后能向轧制温度解析和将轧制加工时的资料组织变化,尤其是将轧制缺陷解析系统组合起来的综合轧制理论方面发展。 提高轧辊和轧制工具的耐磨性、抗事故性和抗桔皮状缺陷性是轧制技术飞速发展所不可缺少的重要技术,从减轻环保压力的观点来看,这些技术要素今后也是很重要的 钢板 新型轧机 关于轧机辊距的控制,轧辊项弯装置是关键。众所周知,日本以20世纪70年代后期呈现的六辊变速轧机(HC轧机、UC轧机)为契机,开发了交叉辊薄板轧机(PC轧机)双轴承座顶弯装置(DCWRB小直径工作辊上装有侧支撑辊的六辊FFC轧机、ZHi轧机、多辊型CR轧机、KT轧机、轧辊自身具有可变凸度型的VC轧辊、TP轧辊、NIPCO轧辊,还有采用在线磨削的轧辊磨床(ORC等,这些新型装备为世界轧制设备的发展做出了很大的贡献。另外,还研究开发了采用1机架多道次轧制技术的各种轧机,但其应用仅限于特殊材的轧制。 连续轧制和直接连接轧制 日本自1968年开发了森吉米尔式多辊轧机的全连续式串列式冷轧机(TCM和1970年开发了四辊轧机的全连续式TCM以来,轧机的连续化已取得很大的进展。目前日本国内的主要轧机都实现了完全连续化。由于完全连续轧机的技术可以和轧机的上下工序连接,因此1986年开发出了酸洗-TCM连续退火成套设备。完全连续化的开发包括了轧制生产计划可以随意变化、稳定焊接技术、带材稳定移动技术、前进方向可变装置等。冷轧的连续化之后,1996年首次在世界上开发出了热轧的连续化技术。粗轧结束后将前后轧材在进入精轧机前进行焊接,使精轧机在无切头切尾的状态下进行无头轧制的技术,解决了产品前后端部的质量问题,同时使极薄钢板和新材质钢板的生产技术变得有可能。 自1989年将50~100mm厚的薄板坯连铸机和轧机直接连接的紧凑式轧机诞生以来,其建设数量逐年增加,目前在日本以外的国家中至少已建设了50套。紧凑式轧机的特征是设备投资少、交货期短,可进行没有水冷滑轨造成黑印的等温轧制,如果采用长的板坯,还能进行半无头轧制,可以预计今后其应用将越来越广,同时能进一步提高产品质量。另外,将来带钢连铸机应用的趋势引人关注。
|